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ABSTRACT

Coronagraph observations provide key information about the orientation of the Sun’s magnetic field.

Previous studies used quasi-radial features detected in coronagraph images to improve coronal magnetic

field models by comparing the orientation of the features to the projected orientation of the model

field. Various algorithms segment these coronal features to approximate the local POS geometry of

the coronal magnetic field, and their orientation can be used as input for optimizing and constraining

coronal magnetic field models. We present a new framework that allows for further quantitative

evaluations of image-based coronal segmentation methods against magnetic field models, and vice-

versa. We compare quasi-radial features identified from QRaFT, a global coronal feature tracing

algorithm, in white-light coronagraph images to outputs of MAS, an advanced MHD model. We use

the FORWARD toolset to produce synthetic pB images co-aligned to real coronagraph observations,

segment features in these images, and quantify the difference between the inferred and model magnetic

field. This approach allows us to geometrically compare features segmented in artificial images to

those segmented in white-light coronagraph observations against the POS projected MAS coronal

magnetic field. We quantify QRaFT’s performance in the artificial images and observational data,

and perform statistical analyses that measure the similarity of these results to compute the accuracy

and uncertainty of the model output to the observational data. The results demonstrate through a

quantitative evaluation that a coronal segmentation method identifies the global large-scale orientation

of the coronal magnetic field within ∼ ±10◦ of the POS projected MAS magnetic field.

Keywords: Solar Corona (1483) — Coronagraphic imaging (313) — Solar magnetic fields (1503) —

Cross-validation (1909) — Model selection (1912) — Solar coronal streamers (1486)

1. INTRODUCTION

1.1. Overview

The solar corona is an important region of the solar atmosphere that sets the conditions of space weather propagation

into the Heliosphere. The coronal magnetic field is dominant in this region, making it the key to the physics behind

most phenomena observed in this region of the sun (Solanki et al. 2006). Despite its dominance, the magnetic field

in the atmospheric layers above the photosphere is notoriously difficult to measure, and therefore we must rely on

extrapolations from indirect measurements of the surface magnetic field using the Zeeman effect taken from ground-
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based observatories to offer the most accurate understanding of the coronal magnetic field (Solanki et al. 2006). For

this reason, magnetic field models are key for accurately representing the coronal magnetic field, and being able to

assess them is essential for accurate space weather forecasting.

In this paper we present a method to evaluate an image based method for assessing coronal magnetic field models.

This method was developed by Jones et al. (2016, 2020), who presented a method to optimize magnetic field models

by comparing the orientation of quasi-radial features segmented in polarized brightness (pB) observations to the

orientation of the magnetic field model. This approach depends on the assumption that structure seen in coronal

images can be treated as a proxy for the orientation of features in the coronal magnetic field. In this paper we will

test the accuracy of this assumption.

Magnetic field line tracing methods use optical features observed in coronal images to segment large-scale signatures

of the coronal magnetic field to measure its orientation. A major open problem in space physics is that there is

little to no ground-truth precedent in which to compare the orientation of these segmented features to, which makes

it difficult to determine if they are accurately representing magnetic structure. While magnetic field models such

as Potential-Field Source Surface (PFSS) and Magnetohydrodynamic (MHD) models can approximate the coronal

magnetic geometry, these models are challenging to constrain due to the absence of magnetic field measurements in

the corona. Evaluating and validating these methods against a ground-truth precedent may illuminate to what extent

we can rely on the features they produce.

1.2. Theoretical Basis

The work of Jones et al. (2020) used features segmented in pB images, which highlight the K-corona. These features

are a result of intensity gradients present in the pB image, however this structure can be connected to the plasma

density distribution in the K-corona. The K-corona itself is the result of photons emitted from the photosphere

scattering off of coronal free electrons (Billings 1966). This process is known as Thomson scattering. Since the electric

field vector is normal to the direction of propagation for electromagnetic (EM) radiation, the K-Corona is polarized

(Blackwell et al. 1967). As discussed in Howard & Tappin (2009), the pB of the white-light corona can be modeled

by the integration of the electron density along an observer’s line of sight. This integration must take into account

several factors, such as the scattering function, the decreasing illumination of electrons with distance from the sun,

and the decreasing degree of polarization with distance from the observer’s plane-of-sky (POS).

The frozen-in-flux condition states that the bulk motion of an ideal MHD plasma cannot move perpendicularly to

the magnetic field (B⃗) without it bringing along, or vice versa. The magnetic field therefore behaves as if it is ’frozen-

in’ with the plasma, so that the magnetic field moves with the plasma. This condition applies in highly conductive

plasmas, such as in the corona and solar wind, as it accelerates into the Heliosphere (Murray 2013). Due to this, the

plasma is intimately connected to the magnetic field in this region of the solar atmosphere, as the plasma evolution

along individual flux tubes is isolated from neighboring flux tubes. The practical effect of this is that any density and

temperature contrasts between adjacent flux tubes will naturally highlight the structure of the magnetic field itself

(Aschwanden 2005). Therefore, the structure seen in coronal pB images should in theory serve as a proxy for the

orientation of features in the coronal magnetic field.

1.3. Framework for Assessing Magnetic Field Models

In the Jones et al. (2016, 2020) studies, features are segmented in coronagraph images using the automated Quasi-

Radial Feature Tracing Algorithm (Uritsky 2022) (QRaFT), which uses adaptive thresholds to enhance and segment

coronal features and approximates their projected geometries using polynomials. This particular algorithm is of interest

to validate, as it focuses on tracing open field line geometries, which have very weak optical signatures and are typically

difficult to measure. These feature tracings are then compared to the projection of the model coronal magnetic field,

assuming that the features observed in the images reflect the projected magnetic field in the image plane.

In this study, we will test this assumption using numerical outputs of the Magnetohydrodynamic Algorithm outside

a Sphere Model (MAS) from PSI, which is described in section 2.4. This MHD model is useful because it incorporates

a complete energy equation, which is necessary in describing both the plasma and magnetic properties of the corona

(Mikić et al. 2018). We use the SSWIDL package FORWARD to create synthetic white-light images based on the

MAS model solution for the 2017 solar eclipse (Mikić et al. 2018). These images will be as seen from the perspective

of the STEREO satellite at times corresponding to the creation of real coronagraph images obtained by the STEREO

COR-1 Coronagraph Instrument (COR-1).
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Figure 1. Flowchart style overview of defined framework for quantitatively assessing image-based coronal segmentations against
magnetic field models, and vice-versa. The inputs and outputs for each component are listed, as well as the general steps for each
component. Each arrow represents an output from a component of the framework that is used as an input into the component
the arrow is connected to.

With the MAS model providing a ground truth magnetic field in which to evaluate against, we segment features

with the QRaFT algorithm, and use a series of methods to measure how well the orientations of quasi-radial plasma

density features detected by QRaFT match the model field orientation. These methods will be discussed in more

detail in section 2. By comparing the optical structure of quasi-radial features detected in coronal images to synthetic

images generated by this MHD model as well as its expected magnetic field, we seek to provide a unique evaluation of

this method’s ability to segment true magnetic structure. We present our results in this analysis in section 3, discuss

potential errors in section 4, and state our conclusions in section 5.

Using these methods to produce the results shown in section 3, we have also defined a framework in which to further

evaluate image-based coronal segmentation methods against model magnetic fields and vice-versa quantitatively. A

high level overview of this framework is shown in figure 1, emphasizing the generality of this approach, which allows

for the evaluation of segmentations from multiple data sources and segmentation algorithms against multiple magnetic

field models. The potential use of this framework will be further discussed in section 4.

2. DATA AND METHODOLOGY

2.1. Synthesizing MHD Model Solution into Synthetic Images

As mentioned in component 2 of figure 1, we use the toolset FORWARD in our framework to transform the 3D

MAS solution into POS view using Carrington Heliographic coordinates, where the POS is given by the Y and Z

axes with the X-axis representing the Sun-observer line (Gibson et al. 2016). Section 1.2 noted that the K Corona’s

pB may be computed as the integration of the electron density along an observer’s line-of-sight (LOS), and then

applied to a scattering function that acts to vary the density along the line-of-sight (Howard & Tappin 2009). Schmit

et al. (2009) provides an explicit equation to calculating the pB in a MAS context. FORWARD utilizes a scattering

function that depends on both the radial distance to the Photosphere and the geometry of the observer relative to the
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scattering point to incorporate illumination of the K Corona due to Thomson scattering (Gibson et al. 2016). The

electron density for each pixel in the various planes of the solution is integrated along the line-of-sight of a hypothetical

observer (in this case the X axis), and is applied to the scattering function. This process results in a synthesized pB

image in the POS view from the perspective of a hypothetical observer. These synthetic pB images are then co-aligned

to each respective observation by using WCS coordinates extracted from each observation’s FITS header as described

in Thompson (2010). Additionally, we estimate the radius of the occulting disk for each synthetic pB image using

parameters from each observation’s FITS header. Figure 4 shows (left) a COR-1 polarized brightness observation used

in this analysis, taken on 2017-08-29, and (right) the synthetic polarized brightness projected onto the plane-of-sky

from the equivalent observational perspective with intensity displayed in a log scale.

2.2. White-Light Observations

While solar eclipses provide excellent opportunities to observe the solar corona in great detail, they do not occur

frequently and are only visible from a small band of area called the path of totality. To make matters worse, this

band changes with every eclipse, making it impossible to select one site that is always in this path. It is estimated

that a given fixed site on Earth is able to view a total solar eclipse once every 350 years, however this estimate varies

by latitude (Pasachoff 2009). Therefore, scientific instruments known as coronagraphs are needed to artificially block

out the sun’s light to consistently study the solar corona. The white-light K-Corona is generated due to the electron

scattering of photospheric light, meaning it is linearly polarized in a tangential direction to the solar limb (de Wijn

et al. 2012). Coronagraphs take advantage of this by measuring the polarized brightness (pB) of the corona, which is

directly related to its electron density (de Wijn et al. 2012).

The STEREO COR-1 Coronagraph Instrument (COR-1) is flown aboard NASA’s STEREO A spacecraft which,

along with STEREO B, had the goal of observing the sun simultaneously from different perspectives. Like other

coronagraphs, it can measure the pB of the corona. Its design is described more completely in Thompson et al. (2003),

but in short, it is an occulting refractive coronagraph that utilizes an internal Lyot stop that is adapted to be used in

space (Thompson et al. 2010).

Applying this data to our framework, as mentioned in the first component of figure 1, images from this data source

are downloaded at level 0 and processed to level 1 using the SolarSoft secchi prep routine. This process involves

background subtraction, vignetting, flat-field correction, CCD bias correction, and other calibration processing. This

routine was run with the keywords polariz on, pB, and rotate on to calculate the polarized brightness and rotate the

image to solar north. This routine combines three polarized images, (rotated at 0◦, 120◦, and 240◦), taken in sequence

and calculates them into one pB image. These images were produced at a 10 minute cadence, and we aggregate

images over an 8-hour timespan to retrieve 50 pB images. These images are then stacked and a median filter is applied

to the stack to create a representative image in order to enhance signal and filter out noise. A similar process is

described in Thompson et al. (2010). This process is useful for identifying quasi-radial plasma density features in

COR-1 observations as the corona’s large scale quasi-radial features remain static over a short period of time, allowing

us to enhance the signal of these features and filter out imperfections such as cosmic rays and other image artifacts.

Despite this enhancement, there are still artifacts present in the final output of this process, which will be discussed

in further detail in section 4.

2.3. QRaFT Methodology

As mentioned in section 1.3, we use the QRaFT code as our image-based segmentation method of choice in our

framework, (component three of figure 1). The QRaFT code enables an automatic detection of quasi-radial coronal

features, which are expected to be approximately aligned with the local coronal magnetic field. The code uses a

coronagraph image as an input; the QRaFT output is an ensemble of quasi-linear detected features approximated by

polynomials, as well as a set of parameters describing the geometry of the features, including the POS orientation

angles used in this study. A detailed description of the QRaFT methodology will be published elsewhere; here we

present a concise outline of the main processing steps.

The studied coronal image I(x, y) first undergoes a preprocessing procedure aimed to reduce the level of the high-

frequency pixel noise and to mitigate the systematic decay of the image intensity with the distance from the solar

limb. The noise reduction is performed using a median boxcar filtering; the radial detrending is based on subtracting

an azimuthally-averaged large-scale radial trend from the processed image.

At the next step, the coronagraph image is transformed into plane polar coordinates (ϕ, ρ), with the position angle

ϕ ∈ [0, 2π] measured in the counterclockwise direction relative to the western solar limb and the radial coordinate ρ
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Figure 2. QRaFT processing steps shown for (left) a synthetic polarized brightness (pB) image produced by MAS and
the FORWARD code and (right) an observed pB image obtained from COR-1. In each example the upper left panel (a) is
the original COR-1 pB image after radial detrending and smoothing, the bottom left panel (b) is the same image in plane
polar coordinates, the top right panel (c) is the signed second-order azimuthal difference, and the bottom right panel (d) is
the unsigned second order difference after azimuthal detrending revealing a fine quasi-radial structure in the example observed
image.

representing the plane-of-sky (POS) distance from the solar disk center. This coordinate system is a natural choice for

studying quasi-radial coronal structures in open-flux solar regions since such structures are characterized by a slowly

varying position angle. Other types of structures such as closed loops require a different approach and lie outside of

the QRaFT’s applicability domain.

To enhance the quasi-radial structures, we compute the unsigned second-order position-angle difference over a

specified characteristic azimuthal scale ∆ϕ:

∆2I(ϕ, ρ) = |I(ϕ−∆ϕ/2, ρ) + I(ϕ+∆ϕ/2, ρ)− 2I(ϕ, ρ)| (1)

We found that the second-order azimuthal difference to be a sensitive marker of field-aligned image structures, with

the absolute value operator used in Eq. 1 enabling a consistent tracing of the structure shape on either side of the

structure.

The enhanced image (1) is detrended in the position angle direction to improve the detection results for the structures

that are characterized by substantially different brightness and signal-to-noise levels. The detrending is achieved by

dividing the enhanced image by its low-pass filtered counterpart obtained by boxcar averaging the array ∆2I(ϕ, ρ)

along the ϕ direction.

Periodic boundary conditions were applied at the edges of the ϕ interval for when performing the azimuthal differ-

encing and detrending.

The resulting enhanced image is subject to an adaptive thresholding allowing us to identify contiguous clusters of

image pixels associated with quasi-radial coronal features of interest. The method “label region” of the IDL language

is used to identify and separate all clusters of pixels satisfying the chosen detection threshold. The cluster detection is

performed multiple times by using different detection thresholds representing different percentile levels of the studied
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image, as well as by varying the lower bound ρmin of the processed range of radial positions to focus the algorithm on

different coronal altitudes. We use between 10 and 20 percentile threshold choices and 10 ρmin values for processing

each coronal image, which results in 100 - 200 individual tracing runs. Combining the outputs of these runs provides

a relatively uniform detection performance at different locations around the Sun.

The clusters produced by each tracing run are approximated by polynomial functions using a nonlinear least-square

fitting. These fits are used to calculate the POS orientation angles along the central line of each of the detected

structures. The orientation angles produced by the QRaFT algorithm are compared with the local magnetic field

direction of the MAS model as described in section 2.6. Figure 2 shows an example of each of these processing steps

on a COR-1 pB observation used in this study.

2.4. PSI MAS Model

To create a ground-truth testing framework for the QRaFT technique we can leverage outputs from state-of-the-art

numerical models of the solar corona. Component two of figure 1 showcases how these outputs are used in the high

level overview of this framework. To this end we employ the Magnetohydrodynamic Algorithm outside a Sphere Model

(MAS) model of the global solar corona (Mikić et al. 1999; Lionello et al. 2009; Mikić et al. 2018). This model (and

similar codes, e.g., van der Holst et al. 2014; Réville et al. 2020) employs a ‘thermodynamic’ MHD approach, where

the additional terms that describe energy flow in the corona and solar wind are included, including coronal heating,

parallel thermal conduction, radiative loss, and Alfvén wave acceleration. This treatment is essential for capturing the

thermal-magnetic state of the corona, including the all-important interplay between magnetic and hydrodynamic forces

that open the corona and form the solar wind. Realistic magnetic configurations for targeted time-periods are obtained

by using measurements of the photospheric magnetic field as the primary boundary condition. Most importantly, using

such a model enables the direct computation and comparison of forward modeled observables to real observations.

This technique can be used to both directly constrain the coronal model and connect coronal observables to their

underlying physical state of the plasma (Lionello et al. 2009; Boe et al. 2021, 2022).

For this particular study we use the high-resolution MAS coronal prediction simulation developed for the August 21,

2017 total solar eclipse. This simulation is fully described by Mikić et al. (2018), but can be summarized as follows:

The simulation utilizes a Wave-Driven-Turbulence (WTD) approach to specify coronal heating (Lionello et al. 2014;

Downs et al. 2016) and an energization technique to add field aligned currents (shear/twist) over large-scale polarity

inversion lines (Mikić et al. 2018; Yeates et al. 2018). To model the corona at a given time, the model must specify a

full-sun map of the radial component of the magnetic field at the inner boundary. Because of the lead-time required

for publishing the prediction, this simulation used a handmade splice of synoptic map data from SDO/HMI (Scherrer

et al. 2012) based on what was available about 10 days prior to the eclipse. This map combined data for Carrington

rotation (CR) 2192 with near-real-time data from a part of CR 2193. To capture plume-like density structures at the

poles, the polar caps were also filled with a random flux distribution whose net matches observations on the net flux

at high latitudes. All told, the boundary magnetic field measurements span a time-range of approximately July 16 to

August 11, 2017, which placed the oldest data near the west limb during totality.

2.5. Data/Model Comparison

To generate a pair of comparison images, we start with the MAS model simulation calculated at the time of the

August 2017 solar eclipse. We use the toolset HelioWeb (2017) to find STEREO A’s position in Carrington Heliographic

coordinates at a particular time and then query the COR-1 database in order to find observations corresponding to this

time. We generate new model images from the MAS solution as described in section 2.1 from this perspective using

the retrieved Carrington Heliographic latitude and longitude. We then output the appropriate model data, (which

will be further described in section 2.8), for use in the segmentation comparison, which will be described in section

2.6. We then determine the next observation time corresponding to a 60◦ rotation of longitude and start the process

again, resulting in a pair of six model slices in an approximately 360◦ span and accordingly six white-light images for

each observatory taken over a 17 day span at the same perspective as the model images in the POS view. This is done

to generate a dataset averaged over a rotation of the Sun in order to have an unbiased comparison with regards to

the viewing angle of the Sun. Figure 3 shows the longitudinal distribution of these six observations across CR 2194,

which corresponds to the time period of the 2017 solar eclipse and this study.

Figure 4 shows a comparison of a COR-1 observation on 2017-08-29, generated as described in section 2.2, along with

a corresponding FORWARD pB model slice. Since we co-align these synthetic pB images to the COR-1 observations
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Figure 3. Polar plot showing the Carrington longitudes of each COR-1 observation chosen in this study. These six observations
correspond to CR 2194 and were chosen to provide roughly 60◦ difference of Carrington longitude between each observation.

respectively, and compare each from an equivalent perspective in space, we are thus directly comparing the orientation

of the observed corona to the model generated synthetic corona.

2.6. Calculating Angular Discrepancies

As in Jones et al. (2016, 2020), we utilize an angular discrepancy scheme that compares the orientation of the

features segmented by QRaFT to the projected orientation of the model magnetic field for both real and synthetic pB

images. This scheme is shown in figure 6 and is the beginning stage of the final component of our framework, (as shown

in component four of figure 1). By then comparing the results of this analysis to the results using the coronagraph

observations COR-1, taken from the same perspective as the synthetic pB images, we are able to evaluate how well

the QRaFT algorithm performs.

In order to generate a statistic on how well the QRaFT feature tracing method determined the orientation of each

feature to the orientation of the model field, we find the angular discrepancy between the orientation of the traced

feature to the orientation of the model field, as shown in figure 6. For each traced feature, we compare the orientation

of the slope of the polynomial that approximates the feature’s orientation to the expected magnetic orientation from

the model for each pixel in said feature. The expected magnetic orientation of the model field is given by the Bz vs

By magnetic field components, given that we are using Carrington Heliographic coordinates in the plane of sky view.

An angle discrepancy of 0◦ would constitute a perfect match between the orientation of the traced feature and the

expected magnetic orientation from the model at a given pixel.
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Figure 4. (Left) COR-1 polarized brightness observation on 2017-08-29. (Right) Synthetic polarized brightness image
generated from FORWARD co-aligned to the equivalent observational perspective as the COR-1 observation.

Figure 5. (Left) Model plane-of-sky magnetic field (POS B⃗) orientation with QRaFT filtered features from MAS ne POS
model slice for 2017-08-29. (Right) Model POS B⃗ orientation with QRaFT filtered features from COR-1 representative median
image for 2017-08-29.
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Figure 6. Sketch of angle discrepancy calculation used to determine performance of the QRaFT feature tracing algorithm. For
each pixel the expected magnetic field orientation, given by the PSI model’s Bz vs By magnetic field components, is compared
to the orientation of the segmented feature determined by the QRaFT algorithm. The angular difference is the statistic in which
we determine how well the algorithm segmented each feature compared to it’s known solution given by the PSI model, with an
angular discrepancy of 0◦ indicating a perfect fit.

We define v⃗1 as the orientation of the plasma density feature traced by QRaFT in POS coordinates. We define this

orientation as:

v⃗1 = xrx̂+ yrŷ (2)

where xr and yr are the horizontal and vertical components of the feature segments in the POS.

We define v⃗2 as the orientation of the of the B⃗ from the PSI model solution translating to POS coordinates via

FORWARD. We define this ’B-vector’ as:

v⃗2 = B⃗yx̂+ B⃗z ŷ (3)

where By and Bz are the y and z components of the central POS magnetic field calculated by the MAS model.

We define an angular discrepancy ∆θ as the angle between the orientation of QRaFT’s polynomial feature, v1, and

the orientation of the expected magnetic field generated by the model, v2, at a given pixel. Since v⃗1 · v⃗2 = |v1| |v2| cos θ
and v⊥1 · v2 = |v1| |v2| sin θ (Hill 1994), this angle can be calculated using the following formula.

∆θ = tan−1

(
v1x̂ ∗ v2ŷ − v1ŷ ∗ v2x̂
v1x̂ ∗ v2x̂+ v1x̂ ∗ v2x̂

)
(4)
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This angle has a range of −90◦ < ∆θ < 90◦ and defines the correlation between the orientation of the predicted

model plane-of-sky magnetic field (POS B⃗) and the projected orientation of plasma density features given by QRaFT.

2.7. Statistical Analysis of Angular Discrepancies

The final step of our framework, as shown in the second half of component four in figure 1, is the generation of

comprehensive statistics and metrics for this evaluation. We compute each pixel’s angle discrepancy for every feature

that is traced by QRaFT, and calculate two sets of statistics evaluating the performance of QRaFT’s traced features.

The first set of statistics we calculate are the median and average discrepancies of the orientation of the traced features

when compared to the expected magnetic field predicted by the model. We do this to quantify QRaFT’s performance

when compared to the model’s result, as well as to signify outliers and compare the similarity of the median and

average values of each dataset. Along with the average discrepancy we also calculate the standard deviation and a

95% confidence interval1 of the average discrepancy.

The second set of statistics we calculate are more sophisticated metrics aimed at comparing the properties of each

dataset to one another. These include the Jensen-Shannon Divergence (JSD), kurtosis, skew, and Tukey’s Honestly

Significant Difference Test (HSD). We use these statistics to measure the similarity of QRaFT’s performance on

white light coronagraph data when compared to simulated pB images, comparing both to the expected magnetic field

generated by the model. To begin, we calculate a histogram and corresponding probability density2 for each dataset

from the results of the angular discrepancy analysis in order to evaluate the performance of the QRaFT code on each of

the images when compared to the model magnetic field orientation. This process allows us to approximate the discrete

distributions of the histograms as a smooth analytical function that can be used to generate statistical comparisons

of the dataset.

In order to generate a statistic for the similarities of the two distributions in each case, we use the Jensen-Shannon

Divergence (JSD)3, which is a statistical means of determining how similar the shapes of two probability distributions

are. The closer this statistic is to 0, the more similar the two distributions are. The probability distributions are

normalized by amplitude when evaluating this statistics in order to evaluate the relative difference in shape of each

distribution.

We use Tukey’s Honestly Significant Difference Test (HSD)4 to evaluate the relative difference in mean values

between each data population described in section 2.8. Performing this analysis allows us to find the relative error

contribution between each population, and since the populations vary in complexity starting from the ideal one-to-one

comparison of the MAS central plane-of-sky electron density, to the MAS line-of-sight integrated electron density, to

the FORWARD polarized brightness, and finally to the white light COR-1 data. We note that in our use of the HSD,

we evaluate this statistic at α = 0.05, corresponding to a 95% confidence interval. Therefore, in each evaluation, this

metric determines if the difference of means between each population is statistically significant corresponding to a 95%

confidence interval5.

2.8. Choosing Data Populations in which to Test Framework

In order to test the data to model comparison and decompose the relative error contributions based on our as-

sumptions, we choose four populations when comparing the spatial geometry of features segmented by QRaFT to

the central POS magnetic field. First, we retain the MAS central plane-of-sky electron density (MAS ne POS) of

each model slice to use as a one-to-one comparison of the orientation of plasma density features in the plane of sky

to the central POS magnetic field. We then retain the MAS line-of-sight integrated electron density (MAS ne LOS)

integrated along the line-of-sight of the observer as the second population. We then retain the FORWARD polarized

brightness (FORWARD pB) calculation as the third population for each model slice, generated as previously described

in section 2.1. We finally use the corresponding COR-1 white-light observations as the fourth population.

These populations are selected in order to provide a varying degree of model complexity when compare the expected

POS B⃗. The MAS ne POS provides a base one to one comparison with the central POS B⃗. The MAS ne LOS adds

a degree of complexity by integrating the electron density along the line-of-sight of the observer. The FORWARD pB

is a true observable and introduces the geometric scattering efficiency along the LOS into the integration. Finally, the

1 The process for calculating a 95% confidence interval is described in appendix A.
2 The process for calculating a probability density from a Gaussian kernel density estimate is described in appendix B.
3 This statistic is described in appendix D.
4 This statistic is described in appendix E.
5 This interval is defined explicitly in appendix A
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Figure 7. (Left) MAS ne POS Model slice for 2017-08-20 with resulting QRaFT angular error plotted by position of pixel.
(Right) COR-1 observation for 2017-08-20 with resulting QRaFT angular error plotted by position of pixel. Potential sources
of error are discussed in section 4.3.

white light COR-1 observations provide the highest degree of complexity as the observational data. The consequences

of the differences of resulting statistics between each of these populations will be discussed further in section 4.3. It

should be noted that these potential consequences lie somewhat outside of the scope of this paper, which is defining

and showcasing the actual methodology of this framework, (figure 1). Nonetheless these consequences hint at potential

areas of further study utilizing this framework, which is why we choose to include them in our discussion.

3. RESULTS

3.1. Average and Median Discrepancies

Figure 7 shows an example of the angular discrepancies, as defined in section 2.6, of the QRaFT feature tracing

method on an example slice of the MAS central plane-of-sky electron density and COR-1 polarized brightness compared

to the orientation of the central POS magnetic field from the MAS model solution. In this figure the discrepancies

are mapped to their associated pixel in each feature and their magnitudes are shown using a color bar. Areas of high

discrepancy are highlighted in red and blue, depending on the sign of the error.

These angular discrepancies are aggregated together across all observations and combined to produce statistics for

each data population. Figure 8 shows histograms of this aggregated data divided into each respective data population

defined in section 2.8. Also present in this figure are probability densities corresponding to each histogram generated

using a Gaussian kernel density estimation6. The left plot show these histograms in a linear scale and the right plot

show them in a log scale. The behavior of the tails of each of these histograms can be easily examined in the log scale,

illuminating which data populations’ tails drop off and flatten out relative to each other. It is noticeable in the left

plot of figure 8 that the COR-1 histogram has a much lower amplitude than the other three histograms, which are

all based on data generated from the model. We believe this to be due to QRaFT detecting more features, and these

features having more pixels, in the model datasets than in the COR-1 observations.

Table 1 shows the average and median values of these angle discrepancies for each data population, as well as the

standard deviation, total number of pixels, and 95% confidence interval range, organized by date of observation and

6 This process is described in appendix B
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Figure 8. (Left) linear and (Right) log-scaled histograms (with probability densities) of the combined angle discrepancies of the
QRaFT filtered features on the COR-1 observations and model datasets including MAS ne POS, MAS ne LOS, and FORWARD
pB when compared to the expected magnetic orientation from the POS B⃗ from the PSI MAS model. The probability distributions
are generated using a kernel density approximation as described in appendix B.

corresponding model datasets. In this table we also calculate the kurtosis and skewness7, of the resulting Gaussian

kernel density estimate for each resulting histogram. Table 2 shows these same statistic for the combined datasets

aggregated across all dates.

Figure 9 showcases box plot statistics from this aggregated data. This figure shows that when aggregated across the

six observations, the MAS ne POS population produces the lowest median discrepancy, Q1, IQR, Q3, andQ3+1.5∗IQR.

Each of these statistics increase when comparing each data population, with MAS ne LOS having slightly higher

statistics than MAS ne POS, FORWARD pB having moderately higher statistics than MAS ne LOS, and COR-1 pB

having the highest statistics of the four populations. These statistics can also be seen in table 2.

We found that when compared to the central POS magnetic field of the PSI model, the average angle discrepancy of

features traced in the COR-1 polarized brightness was 14.554◦, and the average angle discrepancy of features traced

in the synthetic FORWARD polarized brightness was 12.119◦. We also found that when compared to the central POS

magnetic field of the PSI model, the average discrepancy of features traced in the MAS line-of-sight integrated electron

density was 10.504◦, and the average discrepancy of features traced in the MAS central plane-of-sky electron density

was 10.479◦. The medians of each of these populations were 9.157◦ for the COR-1 dataset, 6.883◦ for the FORWARD

pB dataset, 6.035◦ for the MAS ne LOS dataset, and 5.996◦ for the MAS ne POS dataset.

This difference between the median and average discrepancies suggests that the dataset is skewed towards lower

values of angular discrepancies in each analysis, where outlying pixels that have large angular discrepancies increases

the average discrepancy when compared to the median discrepancy. This shows that the QRaFT algorithm generally

segmented features accurate to the magnetic field geometry within a reasonable degree of precision in each of these

data populations.

3.2. JSD Statistical Analysis

The Jensen-Shannon Divergence8 statistic allows us to analyze the similarity of two probability distributions’ shapes,

which is useful for comparing the similarity of each of the data populations described in section 2.8. A probability

distribution is calculated from each histogram using the method described previously in section 2.7. In figure 8, we

can see from these probability distributions that there is close correlation between the shapes of the distributions of

angle discrepancies of features traced in the COR-1 pB, FORWARD pB, MAS ne LOS, and MAS ne POS populations

produced by the model when compared to the model’s magnetic field orientation.

7 These statistics are defined in appendix C
8 This statistic, along with the Kullback-Leibler Divergence, is described in appendix D.
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Figure 9. Boxplot of aggregated absolute angle difference for each data population described in section 2.8. Outliers above the
Q3+1.5IQR range are not shown in the plot.

Since there is no ground truth precedent in which to compare the orientation of segmented coronal features to, as

mentioned in section 1.1, we treat the MAS model solution as our known solution in which to base our comparison

on. In order to diagnose the statistical trends between the model and data, we require an appropriate comparison

framework and statistical metrics in which to quantify this correlation. We use the the model synthetic data compared

to its own magnetic field orientation as the base comparison, so that the similarity between these statistics will reflect

on the correlation between the data and model in regards to the statistical trend of how well quasi-radial features

match the expected magnetic field orientation when segmented from coronal data vs model data.

The JSD, like the Kullback-Leibler Divergence (KLD), is defined between 0 and 1, and compares two distributions,

where a metric closer to 0 indicates the two distributions are similar in shape, and a metric closer to 1 indicates the

two distributions are anti-similar in shape. For transparency we offer both metrics in our results, however we consider

JSD as the more important metric in evaluating the similarity of probability distributions as it is a symmetric statistic.

Table 4 shows the results of the JSD analysis when comparing the probability distributions of the QRaFT perfor-

mance results on the aggregated data populations described in section 2.8 in relation to the orientation of the expected

model magnetic orientation given by the central POS B⃗. The JSD and KLD statistics are combined with the HSD

statistics in tables 4 and 3 for convenience, as both sets of statistics are means of the various data populations to each

other.

Finally, we compare this various data populations’ results from the analyses done in tables 2 and 4 on a random

dataset as a control analysis. This dataset is the size of the mean of means from the four respective datasets described

in section 2.8 and is randomized in a range from −90◦ to 90◦.

4. DISCUSSION

4.1. Overview

In this work we presented a quantitative analysis comparing white light pB observations to synthetic pB images,

along with other model outputs, derived from the output of an advanced MHD model used for predicting the orientation

of the solar corona during solar eclipses. Our preliminary results of this framework show close correlation between the

performance of quasi-radial coronal feature tracing on both the synthetic and white-light images when compared to the

expected model B⃗. These results are supported by the global analysis conducted in table 4, which shows a JSD metric

of 0.007 between the COR-1 pB and FORWARD pB probability distributions when compared to the central POS B⃗

and 0.007 between the MAS ne POS and FORWARD pB probability distributions when compared to the central POS

B⃗. These metrics signify a close similarity between both probability distributions in each case. For comparison, the
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Figure 10. Resulting mean angle discrepancy by date with examples of each data type shown for 2017-09-11 COR-1 model
projection with COR-1 observation. Error bars represent 95% confidence intervals as calculated in section A. These statistics,
analyzed by date, can be found in table 1. In each set of three example plots for each data point, the left plot shows the QRaFT
segmented features plotted onto the enhanced image. The middle figure is the QRaFT segmented features plotted onto the
MAS POS B⃗ orientation as shown in figure 5. The right plot is the QRaFT angular error plotted onto the original source image,
as shown in figure 7.

analysis between the random probability distribution vs the FORWARD pB probability distribution results in a JSD

metric of 0.231, the analysis between the MAS ne POS and random probability distributions results in a JSD metric

of 0.268, and the analysis between the COR-1 pB and random probability distributions results in a JSD metric of

0.215. These metrics are clearly higher in this case, signifying that these distributions do not show good correlation,

which is what we expected the metric to show in this control case.

This analysis also showed that the segmentations by QRaFT was able to capture the global magnetic orientation

between 10.479◦±0.118◦ and 14.554◦±0.184◦ on average for the datasets described in section 2.8 when compared to the

expected magnetic orientation given by the MHD model. We can see these metrics, as well as other central tendency

indicators in table 2. Comparing these results to the random population’s mean discrepancy of 45.246◦ ± 0.239◦, we

see that the mean discrepancies of the populations chosen in section 2.8 are minimal. While these results are low in

comparison to the random population, the resulting 10.479◦ average discrepancy for the MAS ne POS population does

suggest that there is baseline error in the assumptions and methodology of QRaFT. This will be further discussed in

section 4.3.4, but it is worth noting as this metric is able to give us an estimate on how reliable white-light image

segmentation methods are in identifying magnetic structure in the corona.

These results are significant, as the synthetic pB images are generated using MAS, which establishes a ground truth

comparison between these FORWARD modeled pB images and the underlying 3D electron density and magnetic field

distribution from the same calculation, allowing us to test the accuracy of observational methods that approximate

the orientation of the coronal magnetic field, such as coronal segmentations. Comparing the orientation of plasma

density features extrapolated by QRaFT to the expected magnetic orientation from the model establishes a quantifiable

measurement of the agreement between each. Furthermore, using QRaFT to perform this comparison between the

model populations described in section 2.8 vs the model’s expected magnetic field orientation and then between the

COR-1 polarized brightness vs the same expected magnetic field orientation also provides a quantifiable measurement of



15

Table 1. Central Tendency Statistics for each population described in section 2.8. Mean, median, standard deviation, and
95% CI values represent the absolute values in order to display magnitudes. The kurtosis and skewness are calculated on the
probability distribution calculated from the signed angle histograms for each population. The table is sorted in ascending order
of mean discrepancies and organized by the date of corresponding COR-1 observation.

data type date mean median std 95% CI n kurtosis skewness

MAS ne LOS 2017-08-25 7.408 4.477 8.949 0.184 9059 8.127 -0.003

MAS ne POS 2017-08-20 8.150 4.182 12.429 0.251 9444 12.444 -0.342

MAS ne POS 2017-08-29 8.202 5.219 10.214 0.204 9584 8.884 1.028

FORWARD pB 2017-08-25 8.368 4.656 9.997 0.227 7473 4.945 -0.103

MAS ne LOS 2017-08-29 8.736 5.294 11.454 0.191 13878 9.642 -0.157

MAS ne LOS 2017-09-03 9.062 5.802 9.724 0.236 6512 3.402 0.592

MAS ne POS 2017-09-03 9.344 6.063 10.480 0.249 6793 6.902 -0.722

MAS ne LOS 2017-08-20 9.724 5.234 12.902 0.265 9077 6.654 0.505

MAS ne POS 2017-08-25 9.848 5.151 14.176 0.297 8739 8.983 0.404

MAS ne POS 2017-09-11 10.008 7.179 11.774 0.252 8409 8.996 0.510

FORWARD pB 2017-08-29 10.302 5.601 14.190 0.278 9999 7.222 -0.589

FORWARD pB 2017-08-20 10.448 5.787 13.403 0.318 6843 5.740 0.721

FORWARD pB 2017-09-03 10.478 6.812 11.499 0.319 5001 3.365 0.503

COR-1 pB 2017-08-29 11.193 7.858 12.718 0.334 5568 6.179 1.712

MAS ne LOS 2017-09-11 11.333 6.577 14.279 0.324 7481 5.293 -0.657

COR-1 pB 2017-08-25 12.210 8.031 12.360 0.363 4455 4.446 0.117

FORWARD pB 2017-09-11 14.350 9.227 16.636 0.456 5113 4.082 -0.461

COR-1 pB 2017-09-03 14.925 8.984 17.080 0.613 2981 3.855 1.692

COR-1 pB 2017-09-06 16.075 12.273 14.820 0.409 5047 2.141 -0.328

MAS ne LOS 2017-09-06 16.309 10.018 17.747 0.334 10821 3.165 -0.578

COR-1 pB 2017-08-20 16.615 8.021 19.529 0.542 4990 2.492 -0.079

COR-1 pB 2017-09-11 16.633 11.681 16.153 0.454 4856 1.905 -1.312

MAS ne POS 2017-09-06 16.662 9.071 18.900 0.373 9864 2.231 0.063

FORWARD pB 2017-09-06 18.281 11.925 18.689 0.390 8836 2.548 -0.671

Table 2. Combined central tendency statistics for each population described in section 2.8. Mean, median, standard deviation,
and 95% CI values represent the absolute values in order to display magnitudes. The kurtosis and skewness are calculated on
the probability distribution calculated from the signed angle histograms for each population. These populations are compared
to a random sample population as a control analysis. The table is sorted in ascending order of mean discrepancies.

data type date mean median std 95% CI n kurtosis skewness

MAS ne POS combined 10.479 5.996 13.855 0.118 52833 7.108 0.270

MAS ne LOS combined 10.504 6.035 13.348 0.110 56828 6.547 -0.256

FORWARD pB combined 12.119 6.883 14.961 0.141 43265 5.034 -0.295

COR-1 pB combined 14.554 9.157 15.694 0.184 27897 3.377 -0.003

random combined 45.246 45.421 25.929 0.239 45205 -1.196 0.005

the similarity between the data and model. Having the QRaFT algorithm perform similarly on the MAS central plane-

of-sky electron density, MAS line-of-sight integrated electron density, FORWARD polarized brightness, and COR-1

polarized brightness when compared to the expected orientation from the model suggests that the features segmented

by QRaFT represents coronal magnetic field structure within a reasonable error, and establishes a benchmark to

measure the agreement between data and model.
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4.2. MAS MHD Model as a Ground-Truth Comparison

The use of an MHD model, in particular MAS, in this statistical comparison is of special note to discuss. As

mentioned in section 2.4, MAS includes additional energy terms that describe the energy flow in the corona and solar

wind. This is necessary in order to accurately describe the interaction between the plasma and magnetic properties of

the corona. Since we are particularly interested in the orientation of large scale quasi-radial plasma density features

present in the solar corona as viewed in the POS, this makes MAS an ideal source of comparison for our evaluation.

Using this model as a known solution allows us to compare its expected magnetic orientation to the orientation of the

features segmented by QRaFT in order to evaluate how well they agree with these modeled magnetic structures.

Since we are using COR-1 polarized brightness observations to investigate segmented plasma density features in the

K-Corona, the ability to model and retain the electron density is essential in reconstructing the polarization brightness

of the K-Corona. MAS’s ability to output the electron density and magnetic field in 3D allowed for the rotation and

projection of the electron density and magnetic field onto the POS, as described in section 2.1. The ability to work

directly with the electron density when integrating along the line of sight allowed us to compare this data population

to synthetic polarized brightness using the FORWARD code.

We purposefully chose observations that corresponded closely in time with the 2017 solar eclipse, which this particular

solution was modeled to predict. While there is a similar qualitative analysis done by PSI to evaluate their model

against eclipse observations, we target large-scale quasi-radial features as opposed to closed structures such as coronal

loops. These particular features are generally difficult to detect and trace, since the optical signatures in these

features are extremely weak when compared to closed features (Antonucci et al. 2020). We also apply a quantitative

analysis utilizing QRaFT in order to verify that these features represent true magnetic structure. We use our angular

discrepancy analysis described in section 2.6 to generate two types of populations, one set comparing the features of

model output to itself, and the other comparing the features in the COR-1 pB observations to the model. This allowed

us to determine the average and median angular discrepancies for each population described in section 2.8, effectively

telling us the performance of QRaFT in each case. We then calculated probability densities using a Gaussian kernel

density estimation for each population to analyze the analytical shape of each of these distributions. We can see in

figure 8 that this process allows us to examine and compare the shapes of these distributions to each other, effectively

comparing the distribution of discrepancies in the model comparisons to the distribution of discrepancies in the data

comparison. Since each case compares the orientation of features segmented by QRaFT to the expected magnetic

field predicted from the model, this is a direct comparison of segmentations from white-light data against this ground

truth. In tables 2 and 4 we included a population mocking a randomly oriented magnetic field as a control analysis.

It is possible to qualitatively compare the shapes of these distributions, which is effectively a qualitative analysis on

the similarity between the global orientation of the modeled corona when compared to the observed corona, which is

similar to how PSI evaluated their performance in modeling broad aspects of corona in their solar eclipse comparison

with eclipse images (Mikić et al. 2018). We take the additional step of analytically comparing the shapes of these

probability densities to provide a quantifiable metric for how well the model represents the data. Using the JSD,

kurtosis, and skew, we are able to provide metrics for how similar these probability densities are in shape, which gives

a measurement of how well they represent each other. Combining the statistics of the average and median discrepancies

of QRaFT as well as the kurtosis, skew, and JSD of the probability densities, we can describe how accurately QRaFT

segments these features when compared to the expected result while evaluating how the distributions given by how

much the probability densities represent each other. Minimizing these metrics would then in theory suggest improving

the segmentation of quasi-radial features in white light pB observations and potentially also improve MHD modeling

as well.

4.3. Sources of Error

Discussing the results in tables 1 and 2, we see that the average and median discrepancies of plasma density features

traced in both the synthetic pB images and COR-1 pB observations when compared to the POS B⃗ orientation suggest

that their orientation seem to correlate reasonably well with this expected orientation. The metrics given by the

features in the synthetic pB images are also similar to the metrics given by the features segmented in the white-light

observations. We should note that when comparing the model to itself, the performance metrics are lower as indicated

in tables 1 and 2, which is to be expected. Both sets of metrics show a moderate average disagreement from the

expected orientation in both the features segmented from the model populations and in the features segmented from
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the COR-1 polarized brightness. Due to the various models, methods, and sources of data used in this analysis, there

is ample opportunity for error. We pinpoint four potential causes of error in this analysis.

4.3.1. Anomalies/Artifacts from White Light Observations

For ground based observatories, natural imperfections relating to both atmospheric and weather effects may limit

the image quality and even render certain times of observation unusable due to cloud coverage. For example, Elmore

et al. (2003) notes that atmospheric effects such as sky transmission and sky polarization may introduce illegitimate

artifacts to K-Coronagraph Instrument at Mauna Loa Solar Observatory (K-Cor) observations. They also note that

sunlight reflected off the Earth and then by the atmosphere into the line of sight is difficult to remove from the signal

of the corona (Elmore et al. 2003). Applying this framework to ground-based coronagraphs such as K-Cor would

introduce the possibility of this type of error.

In the case of COR-1, since this is a space-based observatory, it is not subject to the same atmospheric effects that

plague ground based observatories. However even in these images artifacts from the detector can be noticed. Another

potential source of error is that the STEREO spacecraft are removed from the Sun-Earth line in order to reliably

detect Earth-directed CMEs (Thompson et al. 2003). While this in theory should not contribute at all to the error

since the MAS model provides a 3D solution, and is thus able to be rotated to any perspective, MAS may be optimized

for the viewpoint of the Sun-Earth line.

Errors in the image processing of the COR-1 pB representative observations may have also contributed to error. As

discussed in section 2.2, several layers of image processing are applied to create the representative pB observations used

in this study. One of these layers is image background subtraction. This is of note as Thompson et al. (2010) compared

COR-1 pB images to Mk4 pB images to test the effectiveness of background removal, and found the overall behavior to

be the same. This is noteworthy as it suggests that the background removal process for each observatory should cause

similar error, if any, to the accuracy of the orientation of the quasi-radial features segmented in this study. Analysis

of ground-based observatories such as K-Cor is a planned next step to further validate and analyze this framework.

The similar performance of QRaFT on both the COR-1 and K-Cor datasets when compared to the expected magnetic

orientation would be a significant step in validating this framework between both types of observatories.

Another caveat not relating to atmospheric effects, but rather conditions on the sun is the timing of the observations

chosen for this analysis. During our analysis, we focus on periods of quiet solar activity in order to preserve the

large-scale magnetic structure given by the quasi-radial regions. This structure is disrupted if major space weather

activity occurs, such as a coronal mass ejection (CME), since the dynamics of this event causes rapid changes to the

orientation of the corona as plasma is ejected outward as a part of this process. There were time periods in which we

had to select observations taken at a slightly earlier/later time than predicted using the method outlined in section

2.5. Several consequences may result from this decision. First, the images are not separated at exactly 60 degrees, but

are skewed slightly more or less for each image. This is to be expected, as it is unreasonable to find every observation

correlating perfectly to a 60 degree rotation of the Sun given that these observations are taken when available. The

second and more consequential, is that the further the observations are taken away from the date of the solar eclipse,

the less representative the corona is to the simulation. The practical effect this could have on our analysis is that

the observations used at the furthest periods from the eclipse may be the least representative of the corona’s overall

structure in the MHD simulation, potentially skewing error towards these images. The aim of this decision was to

provide a 360◦ view of the sun in our analysis in order to eliminate directional bias, which justifies the opportunity

for potential error caused by this decision in our opinion.

4.3.2. Limitations of MHD Models

Regardless of their level of sophistication, it is important to recognize the sources of error and inherent limitations of

global coronal MHD models. In general, thermodynamic MHD models like MAS require inputs (e.g. magnetic bound-

ary conditions) and parameterization choices (e.g. the coronal heating model), whose sources and parameterizations

affect the ensuing 3D distributions of plasma properties and the vector magnetic field.

First, as mentioned in section 2.4, the primary boundary condition used in MAS is a full-sun map of the radial

component of the surface magnetic field, Br. This magnetic boundary condition is the most important input to

the model, as it largely determines the overall 3D structure and morphology of the coronal magnetic field. Because

measurements of the surface magnetic field are typically only available from observatories positioned along the Sun-

Earth line (as is the case here), a full-sun map of Br must be constructed from series of magnetograph observations

in time, covering at least one solar rotation (e.g. a synoptic map) or produced by a data assimilative model that also
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describes the evolution of the field in unobserved region (e.g. synchronic maps produced by surface flux-transport

models). This implies a catch 22 for this framework and data validation as a whole, as the MHD models must

inherently rely on magnetic boundary conditions that are certain to have limitations in both temporal and spatial

accuracy. As mentioned in section 2.4, this particular model used a synoptic map from SDO/HMI as the input Br at

the inner boundary to predict the conditions of the corona on August 21, 2017. Since this map was generated using

data from CRs 2192 and 2193, and our observational comparisons use data from CR 2194, this may be one significant

source of error. This error is challenging to quantify however due to both the observing limitations and the inherent

evolution of the Sun’s surface magnetic field, which together imply that there is no single map or MHD model that can

be constructed that would simultaneously describe each of our observation dates. That said, the pipeline and error

metrics discussed here could in-principle be used to optimize the magnetic boundary conditions for a given case (e.g.;

Jones et al. 2016, 2020).

Another important element of MHD simulations is the combination of the hydrodynamic boundary conditions

and coronal heating model that together determine the plasma state of the model (density, temperature, velocity).

The heating model in particular is an essential piece of determining the appearance of coronal observables (Lionello

et al. 2009), and there is an intrinsic feedback between the heating, plasma, and the 3D coronal magnetic field that

determine where the solar wind is able to open the magnetic field and the morphological appearance of coronal

structures (streamers, loops, coronal holes, etc., Downs et al. 2010). In other words, this choice may influence the

misalignment angle and error metrics discussed here. In our case, the MHD model that we employ here utilizes the

WTD approach to heat the corona. This approach uses the MHD equations along with auxiliary equations to describe

the subgrid propagation, reflection and dissipation of Alfvén waves to determine a heating term that reasonably

captures coronal heating for a broad range of morphologies (coronal holes, quiet-sun, active regions; Lionello et al.

2014; Downs et al. 2016; Mikić et al. 2018). Even so, such a model must be parameterized and may not fully capture

all of the details of heating, especially in complex regions such as null points or streamer cusps. That said, unlike

in the case of the magnetic boundary conditions, there is hope that our techniques could be used for heating model

parameter optimization in the future, especially if done in tandem with other observational constraints (e.g. EUV and

white-light intensities, in-situ measurements, etc.), and we hope to explore this in the future.

Lastly, another potentially relevant element of coronal modeling is the extent to which the presence of large-scale

coronal current systems in the form of sheared or twisted filament channels (i.e. free magnetic energy) might affect the

observed streamer morphology. Coronal potential field models do not have coronal currents by construction, so this

is typically not a concern that is addressed. Similarly, the majority of thermodynamic global coronal MHD models

are run as line-tied steady-state relaxations, where the solar wind and heliospheric current sheet(s) are formed but

the low coronal domain remains potential to a large extent. There have been recent attempts to use vector magnetic

field information and/or magnetofrictional methods to drive global coronal MHD models to construct coronal current

systems that match observations (e.g. Hayashi et al. 2021, 2022), but between the quality limitations of full-sun vector

magnetic field observations and the various pitfalls and inconsistencies of boundary driving methods (see Tarr et al.

2024), this an extremely challenging and fraught endeavor. On the other hand, as illustrated in Mikić et al. (2018),

which used an ad-hoc method for building shear and magnetic flux-ropes along large-scale polarity inversion lines to

construct the energized model under study here, large-scale shear and flux-ropes can influence the morphologies of

streamers, particularly at their base. The extent to which the QRaFT pipeline is sensitive to such forms of energization

is another interesting avenue to explore going forward, but again illustrates the challenge of the constraining the

large-parameter space involved in coronal modeling, which spans choices made in model parameterizations, physical

assumptions, and numerical implementations.

4.3.3. Central POS Assumption

Another potential source of error is the assumption that the central POS magnetic field is completely responsible for

the orientation of the large quasi-radial plasma density features that we observe in the corona. As noted in section 1.3,

the features traced by QRaFT are assumed to reflect the projected coronal magnetic field in the POS. This assumption

is justified by several factors. Jones et al. (2020) notes that using pB images place a much greater emphasis on coronal

material near the plane of sky since the photospheric light scattered from electrons in the image plane is more polarized

than the light scattered from electrons away from the plane. The consequence of this is that all coronal features appear

within image plane, even those located outside of the POS (Jones et al. 2020). There are also practical limits justifying

this assumption. In order to perfectly compare the 3-D magnetic solution provided by the MHD model, one would
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need to know the topology of the plasma density from pB observations taken from Earth’s perspective. We cannot

simultaneously probe the Sun for changes in its electron density in order to model the topology of both the magnetic

field and the plasma density structures at different solar radii. We can therefore only measure the orientation of plasma

density features in the plane of sky when analyzing pB observations with coronal image segmentation methods such

as QRaFT.

While there are justifications for this assumption, it also creates ample room for error in this analysis. This assump-

tion assumes that the central POS magnetic field is responsible for the orientation of the large quasi-radial plasma

density features that we observe in the corona. Given that the corona is a three-dimensional dynamic structure that

does not lie in a single plane and also varies along the line-of-sight, it is easy to see how error can be introduced from

this assumption. If there are contributions to the pB signal from polarized structures in the corona that lie outside

of the POS, this would introduce error into the comparison with the central POS B⃗. An example of such a signature

could be the scattering of free coronal electrons that occur outside of the POS. The MHD solution of MAS is a 3D

field, modeling the physical reality of the system. This is an assumption that can naturally lead to errors in this

analysis, and would be worth exploring in future work. This could be done by using the LOS or emissivity weighted

LOS integrals of B⃗ components to produce a component in which to compare too.

It should be noted from table 4 that the difference between the MAS ne POS and MAS ne LOS populations was only

0.025◦. This difference was not enough to reject the null hypothesis (H0) according to the HSD analysis. This suggests

that the error produced from the geometric projection of the 3-D volume of the MAS line-of-sight integrated electron

density onto the POS was not enough to produce significant error to this analysis. The similarity between the pB and

MAS ne LOS results suggests that where QRaFT is identifying features, the coronal material tends to be near the

plane-of-sky. If further investigation using this framework suggests that the contributions of electrons away from the

POS doesn’t produce significant error when comparing traced features to the POS B⃗, this would be a significant step

in validating the earlier mentioned assumption. It should be cautioned that in order to truly validate this assumption,

this result would need to be repeated under numerous conditions and data sources. While this method provides a

means in which to do this, it should not be concluded that this lone result constitutes validation of this assumption,

and more work is required to definitively come to this conclusion.

From a theoretical standpoint, one may also make the argument that the pB scattering should better localize

structures to the POS, as mentioned in Jones et al. (2020), and thus should perform better than the MAS ne LOS

results. Further studies may be implemented to test these theories. For example, a cross correlation analysis between

the MAS ne LOS and pB signal would evaluate the similarity of the 2D arrays for each population, providing an

internal check into the validity of this specific result.

It should also be noted from table 4 that there is a mean difference of 1.616◦ between the MAS ne LOS and

FORWARD pB populations in the HSD analysis. This difference is large enough to reject the null hypothesis (H0) and

show that there is a statistically significant difference between these populations. This shows that when comparing

central POS B⃗ orientation to the orientation of the MAS ne LOS and then to the FORWARD pB, there exists a

statistically significant difference, and thus the attributes between these populations contributes enough error to be

statistically significant. This suggests that the artificial scattering alone, along with other methods that do not involve

integrating the ne along the LOS in FORWARD, contributed enough error in this analysis to be statistically significant.

Correlating this error to the error between the MAS ne POS and FORWARD pB populations in table 4, we see that

there is a mean difference of 1.641◦ between the MAS ne POS and FORWARD pB populations. This difference is

also large enough to reject the null hypothesis (H0) and show that there is a statistically significant difference between

these populations, but is also roughly equal to the sum of the two previously mentioned errors. We believe this to

be an example of this framework dissecting and quantifying the various contributions of error in this analysis, as this

result suggests that the combined factors of the geometric projection along with the scattering of free coronal electrons

contributed enough error to the analysis to be statistically significant, but that the geometric projection of the 3-D

volume of the MAS line-of-sight integrated electron density onto the POS alone did not contribute enough error to

the analysis to be statistically significant. As mentioned previously, if this framework is found to consistently show

this result under further analysis, this would be a significant step in validating the earlier mentioned assumption and

would provide a quantitative baseline in which to describe and account for this error.

Finally, it is worth noting from table 4 that the shape of the probability densities of the MAS ne POS results

and the FORWARD pB are highly similar as indicated by the JSD statistic of 0.007◦. The shape of the probability

densities of the MAS ne POS results and the MAS ne LOS results are even more highly similar as indicated by the JSD



20

statistic of 0.006◦ degrees, which is what we would have expected given pattern of the previously mentioned results

when comparing these populations’ mean angular differences. We believe that these quantitative results further add

to the justification that the assumption that the central POS magnetic field is deterministic of the orientation of the

corona is warranted. The possibility of quantitative validation of this assumption from this framework is a potentially

significant milestone as several models and analyses of the solar corona rely on this assumption, but it has yet to be

quantitatively justified.

4.3.4. Errors Borne from QRaFT

It is possible, and in some cases likely, that QRaFT is not perfectly approximating the orientation of plasma density

features in both the COR-1 pB observations and in the simulated FORWARD pB images. An example of this is

QRaFT’s ’blob filtering’ method not being able to filter out every spurious feature detected by the algorithm. These

features are normally small, and when filtered by the radial length, are able to be filtered out reasonably well.

One of the most prominent sources of error stems from QRaFT tracing radial features, (or what it perceives to be

open field features), in closed field regions of the magnetic field in the POS. These regions can be especially noticed

when plotting the features from QRaFT error over the expected magnetic field, such as in figure 5, and when plotting

angular error over the features traced from QRaFT, such as in figure 7. These global plots of the angular error allow

us to dissect the pattern of how QRaFT’s features match the model magnetic field. In these plots, the regions with

the most error correlate to the closed regions of the model magnetic field, as the quasi-radial features cross this field

near perpendicularly in these regions. These errors have a high impact on the resulting statistics of the analysis, as

seen from the discrepancy of the global means and medians in tables 1 and 2.

As mentioned in section 3, the average discrepancy of the MAS ne POS population was 10.479◦. As this population

is a 1-1 comparison of the model POS B⃗ solution to its corresponding MAS ne POS, this figure is a reasonable estimate

of the systematic error of QRaFT. It is noticeable from figure 10 that QRaFT segments features that do not correspond

with true structure in the corona, particularly when comparing segmentations in COR-1 observations to segmentations

in the MAS central plane-of-sky electron density, as shown in figure 5. In this comparison, there are clearly spurious

segmentations in the COR-1 dataset that do not represent magnetic structure. In particular, features were seen to be

originating from locations well beyond the solar occulting radius in several observations. While these features were

able to be filtered out manually in this analysis, this still suggests that QRaFT has room for improvement in feature

detection and filtration. Figure 2 shows steps of the detrending and enhancement method described in section 2.3, and

in particular panel (d) of this figure shows the fine quasi-radial structure revealed from the second order detrending.

There do appear to be artifacts in this enhancement that may be mistaken for features by the algorithm that are not

automatically filtered when selecting the final features. Since QRaFT is in active development, the conclusion that it

can be improved and from this further reduce the baseline error is reasonable.

4.4. Utilizing Framework to Improve Error

Through a rigorous set of statistical tests, we believe that we were able to numerically characterize the error contri-

butions from these assumed sources. We carefully chose four sets of populations from the data in which to measure

this potential error, those being the MAS central plane-of-sky electron density (MAS ne POS), MAS line-of-sight

integrated electron density (MAS ne LOS), FORWARD polarized brightness (FORWARD pB), and the white light

COR-1 polarized brightness (COR-1 pB).

The difference between the means calculated in Tukey’s Honestly Significant Difference Test9 for these first two

populations of the MAS ne POS and the MAS ne LOS should provide the error contribution from the geometric

projection of the 3-D electron density volume onto the POS. Likewise the difference between the means of the next two

populations given by the MAS ne POS and model calculated FORWARD pB should provide the error contribution

from the artificial scattering and other methods used in FORWARD. Finally the difference between the last two

populations given by the model calculated FORWARD pB and white light COR-1 pB should provide all other error

contributions associated from the comparison of the modeled POS B⃗ to the segmented features from the observed

polarized brightness. Table 3 shows the results of this error analysis for each population comparison across each date

of observation chosen while table 4 shows the results of this error analysis for each population for the combined data.

9 This test is described in appendix E.
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Table 3. Model type comparison using HSD and JSD statistics for COR-1 dataset by date. Methods are described in appendices
E and D, respectively. In the (reject H0?) column, a value of 1 indicates that the null hypothesis (H0) is rejected and a value
of 0 indicates that H0 is not rejected.

group 1 group 2 date mean diff lower CI bound upper CI bound KLD JSD reject H0?

COR-1 pB MAS ne POS 2017-08-20 -8.465 -9.102 -7.827 0.179 0.048 1

COR-1 pB MAS ne LOS 2017-08-20 -6.891 -7.533 -6.249 0.117 0.032 1

COR-1 pB FORWARD pB 2017-08-20 -6.167 -6.845 -5.489 0.092 0.026 1

MAS ne POS MAS ne LOS 2017-08-20 1.574 1.038 2.109 0.035 0.009 1

MAS ne POS FORWARD pB 2017-08-20 2.297 1.719 2.876 0.118 0.027 1

MAS ne LOS FORWARD pB 2017-08-20 0.724 0.141 1.307 0.060 0.014 1

COR-1 pB MAS ne POS 2017-08-25 -2.363 -2.905 -1.820 0.225 0.058 1

COR-1 pB MAS ne LOS 2017-08-25 -4.802 -5.341 -4.263 0.110 0.030 1

COR-1 pB FORWARD pB 2017-08-25 -3.842 -4.400 -3.284 0.082 0.022 1

MAS ne POS MAS ne LOS 2017-08-25 -2.439 -2.881 -1.998 0.196 0.043 1

MAS ne POS FORWARD pB 2017-08-25 -1.479 -1.943 -1.015 0.239 0.056 1

MAS ne LOS FORWARD pB 2017-08-25 0.960 0.500 1.421 0.022 0.005 1

COR-1 pB MAS ne POS 2017-08-29 -2.991 -3.516 -2.467 1.860 0.400 1

COR-1 pB MAS ne LOS 2017-08-29 -2.457 -2.951 -1.963 1.826 0.365 1

COR-1 pB FORWARD pB 2017-08-29 -0.891 -1.412 -0.370 1.719 0.348 1

MAS ne POS MAS ne LOS 2017-08-29 0.535 0.121 0.948 0.049 0.013 1

MAS ne POS FORWARD pB 2017-08-29 2.101 1.655 2.546 0.098 0.016 1

MAS ne LOS FORWARD pB 2017-08-29 1.566 1.157 1.974 0.016 0.004 1

COR-1 pB MAS ne POS 2017-09-03 -5.582 -6.240 -4.923 0.269 0.070 1

COR-1 pB MAS ne LOS 2017-09-03 -5.863 -6.525 -5.200 0.352 0.084 1

COR-1 pB FORWARD pB 2017-09-03 -4.447 -5.141 -3.754 0.217 0.054 1

MAS ne POS MAS ne LOS 2017-09-03 -0.281 -0.801 0.238 0.113 0.029 0

MAS ne POS FORWARD pB 2017-09-03 1.134 0.576 1.692 0.097 0.017 1

MAS ne LOS FORWARD pB 2017-09-03 1.415 0.852 1.978 0.048 0.012 1

COR-1 pB MAS ne POS 2017-09-06 0.587 -0.211 1.385 0.166 0.035 0

COR-1 pB MAS ne LOS 2017-09-06 0.235 -0.551 1.020 0.106 0.021 0

COR-1 pB FORWARD pB 2017-09-06 2.206 1.393 3.019 0.103 0.019 1

MAS ne POS MAS ne LOS 2017-09-06 -0.353 -0.994 0.289 0.058 0.014 0

MAS ne POS FORWARD pB 2017-09-06 1.619 0.944 2.294 0.075 0.018 1

MAS ne LOS FORWARD pB 2017-09-06 1.972 1.310 2.632 0.017 0.004 1

COR-1 pB MAS ne POS 2017-09-11 -6.625 -7.292 -5.957 0.290 0.070 1

COR-1 pB MAS ne LOS 2017-09-11 -5.300 -5.982 -4.617 0.219 0.051 1

COR-1 pB FORWARD pB 2017-09-11 -2.283 -3.025 -1.540 0.169 0.033 1

MAS ne POS MAS ne LOS 2017-09-11 1.325 0.737 1.914 0.052 0.015 1

MAS ne POS FORWARD pB 2017-09-11 4.342 3.686 4.999 0.129 0.022 1

MAS ne LOS FORWARD pB 2017-09-11 3.017 2.345 3.689 0.040 0.010 1

While each potential source of error adds uncertainty to the accuracy of our analysis, the fact that there is moderate

error provides the opportunity to improve this error through further use of this framework. In section 4.2, it was noted

that one of the primary methods to determine the accuracy of PSI’s solar eclipse analysis was by qualitative comparison

with eclipse images. This analysis provides potentially the first method to quantitatively analyze the accuracy of the

orientation of quasi-radial coronal features segmented from white light imaging against features segmented from a

ground-truth MHD model when compared to their predicted magnetic orientation using this solution. This method

therefore provides a benchmark in which to improve the sources of error found in this analysis. Since we now have a
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Table 4. Model type comparison using HSD and JSD statistics for COR-1 combined dataset. Methods are described in sections
E and D, respectively. In the (reject H0?) column, a value of 1 indicates that the null hypothesis (H0) is rejected and a value
of 0 indicates that H0 is not rejected.

group 1 group 2 date mean diff lower bound CI upper bound CI KLD JSD reject H0?

COR-1 pB MAS ne POS combined -4.076 -4.424 -3.728 0.079 0.020 1

COR-1 pB MAS ne LOS combined -4.051 -4.394 -3.707 0.056 0.014 1

COR-1 pB FORWARD pB combined -2.435 -2.796 -2.074 0.033 0.007 1

COR-1 pB random combined 30.692 30.334 31.050 0.881 0.215 1

MAS ne POS MAS ne LOS combined 0.025 -0.259 0.309 0.022 0.006 0

MAS ne POS FORWARD pB combined 1.641 1.336 1.946 0.026 0.007 1

MAS ne POS random combined 34.767 34.466 35.069 1.169 0.268 1

MAS ne LOS FORWARD pB combined 1.616 1.316 1.916 0.010 0.003 1

MAS ne LOS random combined 34.742 34.446 35.039 1.149 0.263 1

FORWARD pB random combined 33.127 32.810 33.443 0.998 0.231 1
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Figure 11. Heatmaps of JSD statistics shown in table 4. The left plot displays a comparison of the JSD metrics between
COR-1 pB, MAS ne POS, MAS ne LOS, and FORWARD pB. The right plot displays this same comparison, but also includes
the random population in the heatmap. In each plot, each diagonal cell has a value of 0 as by definition the JSD between two
identical probability densities is 0.

quantifiable metric for both the performance of QRaFT in identifying magnetic structure and for how well the MHD

simulation represents the observational data analyzed, these results can be used as a benchmark in which to improve

both respectively. For example, if a major source of error came from the assumptions made in the MHD model, if

utilizing different assumptions produced better metrics while using this framework, then this would suggest that those

different assumptions resulted in a better representation of the observational data. This would allow us to conclude

that the MHD model performed better utilizing those different set of assumptions. An example of this could be the

photospheric magnetic field map used as a constraint for generating the MHD model. Likewise if a major source of

error came from QRaFT, if a modification to QRaFT’s code resulted in better metrics, then this would suggest that

this modification improved QRaFT’s performance and ability to project the true orientation of quasi-radial plasma

density features.

The major advantage of our framework is the quantitative metrics describing both the accuracy of feature tracing

methods and how representative MHD models of the white-light corona are to observational white-light data. This

framework could allow us to improve both feature tracing methods and MHD modeling, and also compare different
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varieties of each. This framework has the potential to provide important insight to validating segmentations from

white light data against ground-truth MHD models, especially since we can now provide a way to quantitatively state

how representative an MHD model is to the large scale coronal features observed in white-light data. This may unlock

insights necessary to improve both MHD modeling and feature tracing that would not have been obvious by utilizing

only qualitative comparisons. This is important, as how accurately we are able to segment the orientation of large scale

plasma density features in the corona directly impacts the accuracy and uncertainty of boundary conditions such as

the source surface boundary, which is used to set the overall orientation of the IMF and dictate solar wind propagation

by space weather models such as WSA. McGregor et al. (2008) showed that improving this condition improved the

WSA model skill at predicting both solar wind speed and IMF polarity at Earth. This indicates that even a small error

or uncertainty in estimating the orientation of quasi-radial magnetic field lines can significantly affect the prediction

of these properties at Earth when utilizing space weather prediction models like WSA. The ability to quantify and

improve this accuracy therefore directly translates into the ability to improve space weather forecasting.

5. CONCLUSIONS AND FUTURE WORK

5.1. Summary of Results

In this work we have shown several key results:

1. We have developed an innovative data analysis framework enabling a quantitative assessment of the perfor-

mance of image-based coronal magnetic field tracing techniques used in observational solar physics. By studying

synthetic coronal images produced by a global MHD model, we were able to derive a set of rigorous statistical

metrics describing the consistency between the image-derived coronal magnetic geometry and the “ground truth”

coronal magnetic field predicted by the model.

2. The designed methodology has been tested on the QRaFT field-line tracing package applied to outputs of the high-

resolution MAS model. The results demonstrate that directions of the traced image features are accurate within

approximately ±10◦ of the POS-projected magnetic field of the MAS model. This result provides confidence

that the large scale magnetic geometry of the POS projected coronal magnetic field can be measured via remote

sensing techniques such as coronal segmentation.

3. In addition to standard statistical metrics such as the average and median discrepancies between the segmented

features and the coronal magnetic field, we developed a set of entropy-based metrics based on an in-depth analysis

of the shape of the misalignment errors characterizing the segmented features. These entropy metrics provide

important additional information about how performance profiles compare across different datasets using angular

errors by measuring their similarity.

4. Using the designed ensemble of performance metrics, we evaluated the contribution of several types of errors to

the total misalignment error. These errors included the errors resulting from image noise, feature-tracing errors,

errors introduced by MHD boundary conditions and first-principle physics included in the coronal model, etc.

5. The introduced methodology has universal application and can be applied to a wide variety of coronal feature

tracing methodologies and MHD models. This research has resulted in a data product available to the space

weather community available at Rura (2025).

5.2. Quantitative Conclusions

In this work we have shown a strong correlation between the orientation of coronal features segmented by QRaFT,

an automated quasi-radial feature tracing method, on white light COR-1 polarized brightness observations against

corresponding model outputs including the FORWARD polarized brightness, MAS line-of-sight integrated electron

density, and MAS central plane-of-sky electron density, when compared to the MAS plane-of-sky magnetic field. We

conclude using the methodology and data populations described in sections 2.7 and 2.8 respectfully that the MAS ne

POS performs the best when compared to the POS B⃗, followed by the MAS ne LOS, FORWARD pB, and COR-1

pB as shown in table 2. We also conclude by utilizing metrics such as the JSD and HSD displayed in table 4 that

the MAS ne POS distribution shows the strongest correlation to the MAS ne LOS, followed by the FORWARD pB

and COR-1 pB distributions. While the MAS ne POS correlated the best with the POS B⃗, as expected, all other

comparison populations also correlated reasonably well, especially when compared to the random distribution used as



24

a control analysis as shown in tables 2 and 4. This is also evident in figure 11, where the JSD metrics of the aggregated

population datasets are shown both with and without the random population statistics for comparison.

We believe we have also created a framework that is able to diagnose error contributions quantitatively depending

on the assumptions made when selecting model datasets to compare against. As mentioned in section 4.3.3, we believe

we measured a 1.616◦ error contribution from the FORWARD calculated pB when compared to the MAS line-of-sight

integrated electron density. We believe this is measuring the difference between this electron density integral and the

theoretical calculations involved in modeling the physics of pB observables, including Thomson scattering and other

methods used in FORWARD when synthesizing model pB observations. We also measured a 0.025◦ error produced

from the geometric projection of the 3-D volume of the MAS ne LOS onto the POS. The latter statistic is noteworthy

as it suggests that where QRaFT is identifying features, the material tends to be near the plane-of-sky. A more

comprehensive study is needed to validate the assumption mentioned in Jones et al. (2020) that all features segmented

in coronal images appear within the image plane. Overall, we measured a 2.435◦ difference between the FORWARD

pB and COR-1 pB populations and a 4.076◦ difference between the MAS ne POS and COR-1 pB populations, as

shown in table 4. While it’s tempting to breakdown the potential reasons between these differences in population,

these lie beyond the scope of this paper. Furthermore, while we hint at the potential meaning of these differences, this

is only one set of results on one comparison of one dataset. A more comprehensive study would be needed in order to

confidently make any of these conclusions. It should be noted that overall, these differences are significantly smaller

than the difference from the random population as shown in table 4. This gives us confidence that QRaFT is able to

measure magnetic structure and that this framework has the ability to determine the accuracy of this measurement

against MHD simulations.

5.3. Future Work

By performing a statistical analysis to determine the similarity of the QRaFT feature tracing method’s performance

between model and white-light data when compared to the expected POS B⃗ from the model, we attest that we

have defined a metric to quantify the accuracy and uncertainty of the model outputs compared to the white-light

observations. With this framework defined and illustrated, interesting future analyses may be performed. This

framework may allow us to explore the latitudinal relationship between the performance of feature tracing and expose

regions of the corona that are more poorly traced than others. We can also investigate the performance of the feature

tracing analysis based on the length or location of the feature. As mentioned in section 4.3.1, we also plan to apply

this framework to white-light pB data from K-Cor to analyze the similarity of QRaFT’s performance between ground-

based and space-based coronagraphs. This would also allow us to confirm this framework’s reliability between both

observatory types. The metrics defined in this framework give us a toolset to determine how well MHD models match

white-light segmentations in specific regions of the Sun, providing opportunities for new physics to be discovered and

for modeling to be improved.

It is important to note that it does not matter in the context of this framework’s statistics which data population

described in section 2.8 we choose to be the “right answer” to compare against when performing the JSD analysis

against the other populations since this statistic is symmetric, as can be seen in Figure 11. This helps eliminate

bias in the framework and is advantageous given that there is little to no ground truth precedent in determining the

photospheric magnetic field (Jones et al. 2016). Since there is no precedent in determining this magnetic field, we rely

on PSI’s MAS model as our ground truth solution to compare the coronal segmentations against. Having, however

an unbiased metric determining the similarity of the orientation to these coronal segmentations against this expected

magnetic field without assuming which is the right answer helps to equally validate these segmentations against the

model solution and vice-versa. We believe that this unbiased analysis results in a valid metric for determining both

the accuracy and uncertainty of white-light coronal segmentations against MHD model outputs and vice-versa.

In conclusion, we developed a set of ready-to-use numerical tools for measuring a geometric discrepancy between a

solar coronal model and real coronal structure, ranging from simple statistical indicators to sophisticated distribution

comparison metrics. While we attest that this tool will have future application in quantifying the uncertainty in

automated feature tracing methods and constraining boundary conditions in space weather models, we show that

this tool already has immediate application by quantifying how well an MHD model of the corona fits the observed

structure. We believe this is a valuable framework for space weather modeling, as it provides quantifiable metrics into

how well a specific model run fits the global structure of the corona. We believe these metrics are also valuable to use

for coronal segmentations, as they can be used to determine the accuracy of white-light coronal segmentations against
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a ground-truth solution using an MHD model. Using this framework, we have shown that a coronal segmentation

method identifies the global large-scale orientation of the coronal magnetic field in white-light polarized brightness

observations within a reasonable degree of precision.
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APPENDIX

A. CONFIDENCE INTERVALS

A confidence interval is dependent on both the standard deviation and sample size of the dataset, and gives an

estimate of the margin of error of the result. A confidence interval of (100− α)% can be defined as x̂− (z1−α/2) ∗ SE
to x̂ + (z1−α/2) ∗ SE, where x̂ is the mean value, and SE is the standard error (Gardner 2000). Choosing α = 0.05,

(z0.975 = 1.96) we can define a 95% confidence interval as:

CI = 1.96 ∗ σ√
n

(A1)

where σ is the standard deviation and n is the sample size. A 95% confidence interval is generally considered sufficient

to constitute scientific discovery filtering out background factors (Cowan et al. 2011). Determining the confidence of

this is useful to evaluate its uncertainty. Because the sample sizes of histograms may differ, whether because more

features were extracted in one particular image vs another, or if features traced in one particular image are longer

on average than another, the confidence interval of the metric may vary. This interval is also useful determining of

the performance of QRaFT as it gives a measure of the range of potential error. This confidence interval analysis is

therefore beneficial to further quantifying the overall uncertainty of this method.

B. GAUSSIAN KERNEL DENSITY ESTIMATE

For a discrete distribution XN ≡ {X1, . . . , XN}, a Gaussian kernel density estimate can be defined as:

f̂ =
1

N

N∑
i=1

ϕ (x,Xi; t) (B2)

where

ϕ (x,Xi; t) =
1√
2πt

e−(x−Xi)
2/2t (B3)

note that N is the number of discrete values, and ϕ (x,Xi; t) is a Gaussian kernel that has location Xi and scale
√
t

(Botev et al. 2010). This allows us to approximate N different values from an unknown distribution into a continuous

probability density function that describes the distribution of values analytically. We note that a bandwidth factor ĥi

can influence the estimate determined by the Gaussian kernel density estimate. We use the bandwidth determined by

Scott’s rule, which is defined as:

ĥi = σ̂in
−1/(d+4) (B4)

where σ̂i is the standard deviation of the data, n is the number of data values, and d is the number of dimensions

(Scott 2015).

C. STATISTICAL METRICS OF PROBABILITY DENSITIES

Kurtosis is the measurement of whether a dataset is heavy-tailed or light-tailed compared to a normal distribution,

while skewness is a measurement of symmetry (or lack thereof) of a dataset (Prins 2023). These two measurements

can be extremely useful in generically describing the overall shape of a given distribution, especially when combined

with other statistical measurements such as the mean and standard deviation.

The following definitions are taken from Prins (2023).

For a dataset consisting of Y1, Y2, Y3, . . . , YN , the kurtosis can be defined as

kurtosis =

∑N
i=1

(
Yi − Ȳ

)
/N

s4
− 3 (C5)

Likewise for a dataset consisting of Y1, Y2, Y3, . . . , YN , the skewness can be defined as
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g1 =

∑N
i=1

(
Yi − Ȳ

)3
/N

s3
(C6)

where Ȳ is the mean of the dataset, s is the standard deviation, and N is the sample size (or number of data points).

In expression C5 subtracting the kurtosis by a factor of three is an alternative definition of kurtosis named the Fisher

kurtosis. This is done so that a standard normal distribution has a kurtosis of zero. This is useful for comparing

a distribution to the normal distribution, as under these definitions a normal distribution with equivalent mean and

standard deviation as the comparison distribution would have zero kurtosis and zero skew.

D. JENSEN-SHANNON DIVERGENCE

The definition of the Jensen-Shannon Divergence (JSD) is:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(P ||M) (D7)

where P and Q are two separate probability distributions, DKL is the Kullback-Leibler Divergence (KLD) which is

defined as:

DKL(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(D8)

and finally M is a mixture distribution which is defined as:

M =
1

2
(P +Q) (D9)

(Kashyap et al. 2020).

We note from expression D8 that the KLD is defined as the sum of log
(

P (x)
Q(x)

)
. This has the effect of, when comparing

a distribution Q to the expected distribution P at x, that if Q > P , then log
(

P (x)
Q(x)

)
> 0, and likewise if Q < P ,

then log
(

P (x)
Q(x)

)
< 0. When we sum this expression over x, the closer Q represents P , the closer the sum approaches

0. While both KLD and JSD are metrics for the similarity of two probability distributions, the JSD is considered the

more reliable metric, since the KLD is considered to be asymmetric while the JSD is a symmetric version of the KLD

(Kashyap et al. 2020).

E. TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE TEST

Tukey’s Honestly Significant Difference Test (HSD) is a statistical test aimed at measuring the honestly significant

difference between two means. Abdi & Williams (2010) notes that the analysis of variance, or ANOVA, test can

indicate that at least one population differs from others in the analysis, but does not describe the pattern of differences

between these means.

HSD aims to calculate the honest statistical difference between these means using what is called the q distribution,

which gives the exact sampling distribution of the largest difference between a set of means originating from the same

population (Abdi & Williams 2010).

The following notation and definitions are taken from Abdi & Williams (2010).

This test may analyze A groups, with each group being denoted as a. The number of observations for this group is

denoted as SA, and the total number of observations is denoted as N . The mean of group a is denoted as Ma+. The

error source (within group) is denoted S(A), and the effect (between groups) is denoted A. Likewise the mean square

of error is denoted MSS(A) and the mean square of effect is denoted MSA.

This test aims to determine whether the null hypothesis (H0) is true. In statistics, the null hypothesis states that

there is no significant difference between two sample populations, with any observed difference being due to sampling

or experimental error. HSD aims to prove or disprove the null hypothesis by evaluating the difference between groups

a and a′, which can be given by the q statistics. When H0 is true, the value of q is

q =

√√√√ Ma+ −Ma′+

1
2MSS(A)

(
1
Sa

+ 1
Sa′

) (E10)
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and follows that the studentized range q with a range of A and N−A degrees of freedom. At a given α level, the ratio

t would be declared significant if q was larger than the critical value for the α level obtained from the q distribution.

This value is denoted qA,a where ν = N −A is the number of degrees of freedom of error, and A is the range, (which

in this case is equal to the number of groups). The difference between the means of groups a and a′ will be significant

if

|Ma+ −Ma′+| > HSD = qA,a

√
1

2
MSS(A)

(
1

Sa
+

1

Sa′

)
(E11)

To then evaluate the difference between the means of groups a and a′, the absolute value of the difference between

the means is compared to the value of HSD, and if

|Ma+ −Ma′+| > HSD (E12)

then the comparison is significant at the chosen α level. This procedure is then repeated for all A(A−1)
2 comparisons.

Prins (2023) provides an example of the HSD analysis that helps to highlight its practical use in statistics. In our

methods, the SciPy routine scipy.stats.tukey hsd is used to calculate the HSD.
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